Exercise

Exercise 2.41 Implement the tunction from Figure 2.80(b) using

(a) an 8:1 multiplexer A B ClY
0 0 0 1
(b) a 4:1 multplexer and one inverter 0 0 1 (0
0 1 0 0
(¢) a 2:1 multplexer and two other logic gates 3 % é g
1 0 1 0
1 1 0 0
1 1 1 1
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Exercise

Exercise 2.41 Implement the tunction from Figure 2.80(b) using

SEQUENTIAL LOGIC DESIGN

(a) an 8:1 multiplexer A B ClY
0 0 0 1
(b) a 4:1 multplexer and one inverter 0 0 1 (0
0 1 0 0
(¢) a 2:1 multplexer and two other logic gates 3 % é g
A B | Y 1 0 1 0
5 o lT 1 1 0o
5 1o 1 1 11
1 0 0
1 1 C
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Exercise

Exercise 2.41 Implement the tunction from Figure 2.80(b) using

SEQUENTIAL LOGIC DESIGN

(a) an 8:1 multiplexer A B C|Y
0 0 0 1
(b) a 4:1 multplexer and one inverter g i é g
(¢) a 2:1 multplexer and two other logic gates E % é g
A Y 1 0 1 0
or 1 1 0 0
o 1 1 1 1
1 | BC
A
B +—<C
C g 0
Y
Dr 1 AN
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Introduction

* Outputs of sequential logic depend on current
and prior input values — it has memory.

e Some definitions:

— State: all the information about a circuit necessary
to explain its future behavior

— Latches and flip-flops: state elements that store
one bit of state

— Synchronous sequential circuits: combinational
logic followed by a bank of flip-flops
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SEQUENTIAL LOGIC DESIGN

Sequential Circuits

« Glve seguence to events
* Have memory (short-term)

» Use feedback from output to input to store
Information

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <8>
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SEQUENTIAL LOGIC DESIGN

State Elements

e The state of a circuit influences its future
behavior

e State elements store state
— Bistable circuit
— SR Latch
— D Latch
— D Flip-flop

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <9>
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elements
« Two outputs: O, O
* No Inputs

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Bistable Circuit

* Fundamental building block of other state
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Bistable Circuit Analysis

e Consider the two possible cases:

_ Q: O_ 1 }&QQ
then Q= 1, Q=0 (consistent) %<
0 }wié
- Q=1
then 0=0, Q=1 (consistent) o?1 0
1 %Q(—?

* Stores 1 bit of state in the state variable, Q (or Q)
e But there are no inputs to control the state

SEQUENTIAL LOGIC DESIGN
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SR (Set/Reset) Latch
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SR Latch Analysis

-S=1 R=0: - ROLQ
then @=1and Q=0 0

0
1

S
-5=0,R=1:
then O=1and O=0 "

) N2
1
| N

-
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SR Latch Analysis

-5=1,R=0:
then O=1and O=0
Set the output

-5=0,R=1.
then O=1and 0=0
Reset the output

SEQUENTIAL LOGIC DESIGN
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SR Latch Analysis

-S5=0,R=0: Qprey = 0 Qurev = 1

then Q: Qprev R 0 m, QQ R 0 m, 1_Q

-S=1, R=1: ngQ
then 0=0, 0=0 °
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SR Latch Analysis

<
9
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Q
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O
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e

_S: O, R: O: Qprev=0 Qprevzl

then O = Qprev = 0 m. 0, R 0 m. i

Memory!

_S:].,R:l: R]‘QQ
thenQ:O,@:o 0

Invalid State : N2 o109
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SR Latch Symbol

e SR stands for Set/Reset Latch
— Stores one bit of state (Q)

e Control what value is being stored with S, R

Inputs

— Set: Make the output 1 SR Latch
(5=1,R=0, 0=1) =ymbol

— Reset: Make the output O R QF
(SZO,R:].,Q:O) S QR

* Must do something to avoid
mvalld state (when $=R=1)

el
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D Latch

e Two Inputs: CLK, D
— CLK: controls whenthe output changes
— D (the data input): controls whatthe output changes to

SEQUENTIAL LOGIC DESIGN

e Function 5 Latch
— When CLK =1, Symbol
D passes through to Q (transparent) C||_K
— When CLK =0, Ip ok
@ holds its previous value (opague) o
* Avoids invalid case when
Q@#NOT Q oy
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D Latch Internal Circuit

T oAl R
s

CLK

|
CLK

Q| O

R O X|O

SEQUENTIAL LOGIC DESIGN
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D Latch Internal Circuit

|
CLK B}R o0 CLK

CLK DD S R|Q Q
O X X 0 O Q rev(Tprev
1 ofl1 o 1|0 1
1 110 1 ol1 o
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D Flip-Flop

e Inputs: CLK, D D Flip-Flop

 Function ~Symbols

— Samples Don rising edge of CLK |
e When CLKrises from0tol, 0 1D QF -

passes through to Q Q-

e Otherwise, Q holds its previous
value

— Qchanges only on rising edge of
CLK

 Called eage-triggered
« Activated on the clock edge &

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <21> 1_[;?:_;;[
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complementary clocks

D Flip-Flop Internal Circuit

» Two back-to-back latches (L1 and L2) controlled by

— N1 passes through to Q

— Dpasses through to Q

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <22>

e When CLK =0 CLK
— L1 is transparent o
— L2 is opaque CLK CLK
— Dpasses through to N1 DD Q N1 D QFOQ
e When CLK =1 11 Q- |2 0-0
— L2 is transparent
— L1 is opaque

e Thus, on the edge of the clock (when CLK rises from 0—1)

ELSEVIER



CLK

Q| O

CLK

D Latch vs. D Flip-Flop

D

Q (latch)

Q (flop)

SEQUENTIAL LOGIC DESIGN
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D Latch vs. D Flip-

Flop

CLK

Q| O

—

; ?@

/w
/ /
Q (latch) (\& K%

Qo) A
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CLK

D,—D Q—Q,
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Enabled Flip-Flops

e Inputs: CLK, D, EN
— The enable input (EN) controls when new data (D) is stored

e Function

— EN=1: Dpasses through to Qon the clock edge
— EN=0: the flip-flop retains its previous state

SEQUENTIAL LOGIC DESIGN

Internal
Circuit
EN CLK Symbol
| |
—10
D Q—Q D  Qr
D-—+H1 EN
|
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Resettable Flip-Flops

e Inputs: CLK, D, Reset

e Function:

— Reset=1: Qisforcedto 0
— Reset = 0: flip-flop behaves as ordinary D flip-flop

Symbols

|
N

—D Q_ — L

Reset |
|
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Resettable Flip-Flops

e TWO types:
— Synchronous: resets at the clock edge only
— Asynchronous: resets immediately when Reset=1

« Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

« Synchronously resettable flip-flop?

SEQUENTIAL LOGIC DESIGN
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SEQUENTIAL LOGIC DESIGN
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Resettable Flip-Flops

e TWO types:
— Synchronous: resets at the clock edge only
— Asynchronous: resets immediately when Reset=1

« Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

« Synchronously resettable flip-flop?

Internal
Circuit
CLK

D_
Reset — > D QR




Settable Flip-Flops

Inputs: CLK, D, Set

Function:
— Sef=1: Qissetto1
— Sef=0: the flip-flop behaves as ordinary D flip-flop

Symbols

Set |
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Sequential Logic

o Sequential circuits: all circuits that aren’t
combinational

e Aproblematic circuit

012345678t|me(ns)

SEQUENTIAL LOGIC DESIGN
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Sequential Logic

o Sequential circuits: all circuits that aren’t
combinational

e Aproblematic circuit

012345678t|me(ns)

No inputs and 1-3 outputs

Astable circuit, oscillates

Period depends on inverter delay

It has a cyclic path. output fed back to input

SEQUENTIAL LOGIC DESIGN
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Synchronous Sequential Logic Design

» Breaks cyclic paths by inserting registers
» Registers contain state of the system

« State changes at clock edge: system synchronized to the
clock

Rules of synchronous sequential circuit composition:
— Every circuit element is either a register or a combinational circuit
— At least one circuit element is a register
— All registers receive the same clock signal
— Every cyclic path contains at least one register

e Two common synchronous sequential circuits
— Finite State Machines (FSMs)
— Pipelines

SEQUENTIAL LOGIC DESIGN
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Finite State Machine (FSM)

e Consists of: LK
— State register §— S
Next Current
e Stores current state State State

 Loads next state at clock edge

— Combinational logic
o Computes the next state
o Computes the outputs

Next State Output
Logic Logic

4@ kg o
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Finite State Machines (FSMs)

o Next state determined by current state and inputs

o Two types of finite state machines differ in output logic:
— Moore FSM: outputs depend only on current state
— Mealy FSM: outputs depend on current state and inputs

Moore FSM
CLK
M noxt ) k next I K N
I tat tput
Inputs f;‘;i state state olggr;g outputs
Mealy FSM

CLK
|

M next )k next k N
INPULS -~ state [Sate, ~ Ly state 4 QUIBUL Ly 6 pyts
logic Je
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FSM Example

 Traffic light controller
— Traffic sensors: 7,, 75 (TRUE when there’s traffic)
— Lights: L,, Lg Dining
Hall

-
F [\
Academic (0D (T Ave.

_@ L Dorms

0 openelg

Labs

SEQUENTIAL LOGIC DESIGN
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FSM Black Box

e Inputs: CLK, Reset, T,, Tz
e Outputs: L ,, Lg

CLK
|
T, — Traffic —— L,
Light
T, — Controller [—— Lg
Reset
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FSM State Transition Diagram

 Moore FSM: outputs labeled in each state
o States: Circles
e Transitions: Arcs

Reset

SEQUENTIAL LOGIC DESIGN
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SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

FSM State Transition Diagram

 Moore FSM: outputs labeled in each state
o States: Circles
e Transitions: Arcs
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FSM State Transition Table

<

O

A

I

Q Current

@) State Inputs
o

O

o SO 0 X
: S0 1 X
<L S1 X X
“: S2 X 0
E S2 X 1
8 S3 X X
Wy

V)

el
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FSM State Transition Table

<

O

A

Wi

Q Current

@) State Inputs

o

O

o S0 0 X S1
)]

_ S0 1 X S0
S S1 X X S2
e S2 X 0 S3
E S2 X 1 S2
8 S3 X X S0
i

7o)

el
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Current State Inputs Next State

FSM Encoded State Transition Table

State Encoding

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <42>

0 0 0 X 50 00
0 0 1 X
1 0 X 0 S2 10
1 0 X 1 S3 11
1 1 X X

- 1+ -y j
£ o e ]
i S
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L
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FSM Encoded State Transition Table

Current State Inputs Next State

State Encoding

0 0 0 X | o | 1 . ”
0 0 1 X | ol o
0 1 X | X1 1] 0 Sl 01
1 0 X o | 1| 1 S2 10
1 0 X 1 111 o0 S3 1
1 1 X | X o] o

5" =58,

50=55%7T,*+5%T7T5

SEQUENTIAL LOGIC DESIGN
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FSM Output Table

Current State Outputs
Output Encoding

0 0 green 00
0 1 yellow 01
1 0 red 10
1 1

SEQUENTIAL LOGIC DESIGN

el
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FSM Output Table

Current State Outputs
Output Encoding

SEQUENTIAL LOGIC DESIGN

0 0 0 0 1 0 green 00
0 1 0 1 1110 yellow 01
1 0 1 0 0 0 red 10
1 1 1 0 0 1

L :fl

Lo =515

Lg =5

Lgy =55

- v -y j
£ o e ]
i S
TG L
L
i o
3 ’

el
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SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

FSM Schematic: State Register

Reset

state register

Chapter 3 <46>
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FSM Schematic: Next State Logic

inputs next state logic

SEQUENTIAL LOGIC DESIGN
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FSM Schematic:

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Output Logic
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FSM State Encoding

* Binary encoding:
— 1.e., for four states, 00, 01, 10, 11
e One-hot encoding
— One state bit per state
— Only one state bit HIGH at once
— 1.e., for 4 states, 0001, 0010, 0100, 1000

— Requires more flip-flops
— Often next state and output logic is simpler

SEQUENTIAL LOGIC DESIGN
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Moore vs. Mealy FSM

o Alyssa P. Hacker has a snail that crawls down a paper tape
with 1°s and 0’s on it. The snail smiles whenever the last two
digits it has crawled over are 01. Design Moore and Mealy

FSMs of the snail’s brain. 7
@r]mN
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et L
L. e
o
¥
||

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <51> 1[;1:_;;[



State Transition Diagrams

Moore FSM

Mealy FSM

Reset
0/0

1/0 ° 6

Mealy FSM: arcs indicate input/output

SEQUENTIAL LOGIC DESIGN
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Current

State Inputs Next State

R |k OO0 |0 |0
o 1O (k| |O |0
R O |kP|[O|FL,]|O

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Moore FSM State Transition Table

State Encoding

SO 00

Sl 01

S2 10
Chapter 3 <53>
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Current

State Inputs Next State

SEQUENTIAL LOGIC DESIGN

0 0 0 0 1
0 0 1 0 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0

S =SA

S =A

© Digital Design and Computer Architecture, 2™ Edition, 2012

Moore FSM State Transition Table

State Encoding

SO 00

Sl 01

S2 10
Chapter 3 <54>
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Moore FSM Output Table

Current State  Output
0

0

1

SEQUENTIAL LOGIC DESIGN
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Moore FSM Output Table

Current State  Output

0 0 0

1 0

1 0 1
y=35,

SEQUENTIAL LOGIC DESIGN
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Current Next
State Input  State Output

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Mealy FSM State Transition & Output Table

State Encoding

SO 00
Sl 01
Chapter 3 <57>
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Current Next

State Input  State Output

R =] O[O
ROl |0
O, |O|F

R OO |O

SEQUENTIAL LOGIC DESIGN
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Mealy FSM State Transition & Output Table

State Encoding

SO 00
Sl 01
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Moore FSM Schematic

SEQUENTIAL LOGIC DESIGN
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Mealy FSM Schematic

% S', [ S, DY

SEQUENTIAL LOGIC DESIGN

i oy
& e ¥ T
sl it | FRAY
)t
G i ‘I a_l'_..

3
]

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <60> lEFL




_
\\\\\\\\ / e
—
m 1
()
-~ - o
qo] ) T2
\\\\\\\\ - ORI I I M e
. - =
(<]
- e N
g M.wv. I n
C [ N -
(N ] S
3 ~
[&] —
O 5 < | @
>
\\\\\\\\ / PRI NN SN NEp G
o0}
o]0) 2
[8) o
c 9 e
><
e T SN -=f--1
S— N~
()
m S - < &
O o Y
o e [ S e an -f--1
©
T T o =
s ~ g 9
%) S
> o[ 15 28
()

(q0) 2 %
v Sy §
<
Q

[8) A
M 9 Z e
“““““““““““““ o~
™
od g
[&] —
9) < | e
Q S
Q@
r PV.... o
@) -
D o
@) g 5
> ><
M C 9-
\\\\\\\\\\\\\\\\\\\\\\\\\\ Ny
X ° g 0
—
o &
o

NDIS3d 21901 TVILNINDIS

¢chine

ealy Ma

M

pE

X S1

AS1

pE

AS1

ELSEVIER

Chapter 3 <61>

¥

© Digital Design and Computer Architecture, 2™ Edition, 2012



Factoring State Machines

 Break complex FSMs into smaller interacting
FSMs

 Example: Modify traffic light controller to have
Parade Mode.
— Two more inputs: P, R

— When P =1, enter Parade Mode & Bravado Blvd
light stays green

— When R =1, leave Parade Mode

SEQUENTIAL LOGIC DESIGN
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Unfactored FSM

Factored FSM

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™

Parade FSM

P —>
™ Controller [ 7> La
T —> L,
r—-—————— 1
I I
P | > Mode :
R4|» FSM I
I
I I
| IM |
I I
I I
Ta II » Lights II/ > Ly
T FSM L
I I
I I
| Controller |
: FSM :
Edition, 2012
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Unfactored FSM

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012
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Factored FSM

S1
L,: yellow
Lg: red

M+ T,
Lights FSM

SEQUENTIAL LOGIC DESIGN
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FSM Design Procedure

Identify inputs and outputs
Sketch state transition diagram
Write state transition table
Select state encodings

For Moore machine:
1. Rewrite state transition table with state encodings
2. Write output table

6. Fora Mealy machine:

1. Rewrite combined state transition and output table with state
encodings

7. Write Boolean equations for next state and output Ioglc
8. Sketch the circuit schematic G
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Parallelism

e Two types of parallelism:
— Spatial parallelism
o duplicate hardware performs multiple tasks at once
— Temporal parallelism
o task iIs broken into multiple stages
» also called pipelining
 for example, an assembly line

SEQUENTIAL LOGIC DESIGN
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SEQUENTIAL LOGIC DESIGN

Parallelism Definitions

» Token: Group of Inputs processed to produce
group of outputs

« Latency: Time for one token to pass from
start to end

* Throughput: Number of tokens produced
per unit time

Parallelism increases throughput
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Parallelism Example

« Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

e 5 minutes to roll cookies
e 15 minutes to bake
« What is the latency and throughput without parallelism?

SEQUENTIAL LOGIC DESIGN
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Parallelism Example

« Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

e 5 minutes to roll cookies
e 15 minutes to bake
« What is the latency and throughput without parallelism?

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 tray/ 1/3 hour = 3 trays/hour
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Parallelism Example

 \What is the latency and throughput if Ben
uses parallelism?

— Spatial parallelism: Ben asks Allysa P. Hacker to
help, using her own oven

— Temporal parallelism:
e two stages: rolling and baking
e He uses two trays

* While first batch is baking, he rolls the
second batch, etc.

SEQUENTIAL LOGIC DESIGN
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Spatial Parallelism

Latency:

Tray 1
S
<2 Tray 2 Alyssa 1
T2
& S Tray3
ol
Tray 4 Alyssa 2
\J
Latency = ?

Throughput = ?

SEQUENTIAL LOGIC DESIGN
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Tray 1
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T2 Tray?2
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S S Tray 3
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Tray 4
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Spatial Parallelism

Alyssa 1

Alyssa 2

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 2 trays/ 1/3 hour = 6 trays/hour
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Temporal Parallelism

Temporal
Parallelism

Latency:
time to
first tray

0 5 10 15 20 25 30 35 40 45 50

Latency = ?
Throughput = ?
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g |
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Temporal Parallelism

Temporal
Parallelism

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 trays/ 1/4 hour = 4 trays/hour

Using both techniques, the throughput would be 8 trays/hour
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