Exercise

Exercise 2.41 Implement the tunction from Figure 2.80(b) using

(a) an 8:1 multiplexer A B ClY
0 0 0 1
(b) a 4:1 multplexer and one inverter 0 0 1 (0
0 1 0 0
(¢) a 2:1 multplexer and two other logic gates 3 % é g
1 0 1 0
1 1 0 0
1 1 1 1

SEQUENTIAL LOGIC DESIGN

e L
S el
X
e ||

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <1> lEFL

Exercise

Exercise 2.41 Implement the tunction from Figure 2.80(b) using

p=
)
O

(a) an 8:1 multiplexer

=
=

(b) a 4:1 multplexer and one inverter

(¢) a 2:1 multplexer and two other logic gates
ABC

Ll

0ao
aa1
010
011
100
101
110
111

PR

PR RRPooOo
PR OoOORRE OO
P OoOR ok o

= o O O O o O RP<

= e e O O O | I
== o O == o O D
i S B el T]
= I S B e B T B) g

SEQUENTIAL LOGIC DESIGN

v Y
' bl
© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <2> ELSEVIER

Exercise

Exercise 2.41 Implement the tunction from Figure 2.80(b) using

SEQUENTIAL LOGIC DESIGN

(a) an 8:1 multiplexer A B ClY
0 0 0 1
(b) a 4:1 multplexer and one inverter 0 0 1 (0
0 1 0 0
(¢) a 2:1 multplexer and two other logic gates 3 % é g
A B | Y 1 0 1 0
5 o lT 1 1 0o
5 1o 1 1 11
1 0 0
1 1 C
AB
C 00
01
10 Y
11 e L
L%
El:

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <3> lEFL

Exercise

Exercise 2.41 Implement the tunction from Figure 2.80(b) using

SEQUENTIAL LOGIC DESIGN

(a) an 8:1 multiplexer A B C|Y
0 0 0 1
(b) a 4:1 multplexer and one inverter g i é g
(¢) a 2:1 multplexer and two other logic gates E % é g
A Y 1 0 1 0
or 1 1 0 0
o 1 1 1 1
1 | BC
A
B +—<C
C g 0
Y
Dr 1 AN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <4> lEFL

Chapter 3

Digital Design and Computer Architecture, 2" Edition

David Money Harris and Sarah L. Harris

SEQUENTIAL LOGIC DESIGN

v A R
H e S S
:_'..:'. ol oy A
i e A
) R
T .._]
¥
Nl

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <5> ';1:_|1

Chapter 3 :: Topics

Application |>"hello

® IntrOdUCtion Software |world!”
. Operating @

* Latches and Flip-Flops S
Architecture ===

e Synchronous Logic Design

Micro- <>
architecture 4 p

Finite State Machines
* Timing of Sequential Logic i

e Parallelism Analog

Circuits

Fe
%

Physics

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <6>]_['-‘,Ei_iﬂ

Introduction

* Outputs of sequential logic depend on current
and prior input values — it has memory.

e Some definitions:

— State: all the information about a circuit necessary
to explain its future behavior

— Latches and flip-flops: state elements that store
one bit of state

— Synchronous sequential circuits: combinational
logic followed by a bank of flip-flops

SEQUENTIAL LOGIC DESIGN

s
o, W _f‘:‘-"" .‘I.:
HEr R
o
:'| = * -.'r
X
1

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <7>]_[q;:_;pL

SEQUENTIAL LOGIC DESIGN

Sequential Circuits

« Glve seguence to events
* Have memory (short-term)

» Use feedback from output to input to store
Information

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <8>

ELSEVIE

R

SEQUENTIAL LOGIC DESIGN

State Elements

e The state of a circuit influences its future
behavior

e State elements store state
— Bistable circuit
— SR Latch
— D Latch
— D Flip-flop

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <9>

ELSEVIE

R

elements
« Two outputs: O, O
* No Inputs

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Bistable Circuit

* Fundamental building block of other state

YNy

Chapter 3 <10> ELSEVIER

Bistable Circuit Analysis

e Consider the two possible cases:

_ Q: O_ 1 }&QQ
then Q= 1, Q=0 (consistent) %<
0 }wié
- Q=1
then 0=0, Q=1 (consistent) o?1 0
1 %Q(—?

* Stores 1 bit of state in the state variable, Q (or Q)
e But there are no inputs to control the state

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <11>][;1:_;;[

SR (Set/Reset) Latch

<

9

¢

e

a SR Latch R@Q
=

) =

9 \ _
~ Si@&q
E « Consider the four possible cases:

> -S5=1,R=0

S _S§=0,R=1

Q - 5=0,R=0

& _-s=1R=1

R s
= =
:_'..:".' __:_' oy
i e A
J
L _'r‘-"'.l'
X
1

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <12> 'HEFL

SR Latch Analysis

-S=1 R=0: - ROLQ
then @=1and Q=0 0

0
1

S
-5=0,R=1:
then O=1and O=0 "

) N2
1
| N

-

SEQUENTIAL LOGIC DESIGN

R s
g T S
R - st e
i e A
J
G i .‘ra_l'.ll
&I
1

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <13> lEFL

SR Latch Analysis

-5=1,R=0:
then O=1and O=0
Set the output

-5=0,R=1.
then O=1and 0=0
Reset the output

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

R
(O
0
0
Sl
R

) N2
1
| N

=

Chapter 3 <14>

P
ri- S,
:_'..:".' __:_' o'y
L A
TR
g _r" ¥
X
1

ELSEVIER

SR Latch Analysis

-S5=0,R=0: Qprey = 0 Qurev = 1

then Q: Qprev R 0 m, QQ R 0 m, 1_Q

-S=1, R=1: ngQ
then 0=0, 0=0 °

SEQUENTIAL LOGIC DESIGN
T
O
T
O

Wt e o
- ' et :I_':_' .'I.:
o] T e R
J L
L _'r‘-"'.l'
X
1

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <15> r,;:_pL

SR Latch Analysis

<
9
9
Q
&
O
S
| 80_6 80_6
<
>
L
3
bld
e

_S: O, R: O: Qprev=0 Qprevzl

then O = Qprev = 0 m. 0, R 0 m. i

Memory!

_S:].,R:l: R]‘QQ
thenQ:O,@:o 0

Invalid State : N2 o109

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <16> "?1‘.FL

SR Latch Symbol

e SR stands for Set/Reset Latch
— Stores one bit of state (Q)

e Control what value is being stored with S, R

Inputs

— Set: Make the output 1 SR Latch
(5=1,R=0, 0=1) =ymbol

— Reset: Make the output O R QF
(SZO,R:].,Q:O) S QR

* Must do something to avoid
mvalld state (when $=R=1)

el
© Digital Design and Computer Archit e, 2™ Edition, 2012 Chapter3 <17> ELSEVIER

SFQUENTIAL LOGIC DESIGN

D Latch

e Two Inputs: CLK, D
— CLK: controls whenthe output changes
— D (the data input): controls whatthe output changes to

SEQUENTIAL LOGIC DESIGN

e Function 5 Latch
— When CLK =1, Symbol
D passes through to Q (transparent) C||_K
— When CLK =0, Ip ok
@ holds its previous value (opague) o
* Avoids invalid case when
Q@#NOT Q oy

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <18> 1_[q;:_f;|1

D Latch Internal Circuit

T oAl R
s

CLK

|
CLK

Q| O

R O X|O

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <19>

P e e
i = Pl i
e - e o :_' o'y
i e A
J L
L _'r‘-"'.l'
1
EI

ELSEVIER

D Latch Internal Circuit

|
CLK B}R o0 CLK

CLK DD S R|Q Q
O X X 0 O Q rev(Tprev
1 ofl1 o 1|0 1
1 110 1 ol1 o

SEQUENTIAL LOGIC DESIGN

_ A R
H] e
e - e . =l _.'-:
L, |
T
o e ; ¥y
1
.i

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <20> ELSEVIER

D Flip-Flop

e Inputs: CLK, D D Flip-Flop

 Function ~Symbols

— Samples Don rising edge of CLK |
e When CLKrises from0tol, 0 1D QF -

passes through to Q Q-

e Otherwise, Q holds its previous
value

— Qchanges only on rising edge of
CLK

 Called eage-triggered
« Activated on the clock edge &

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <21> 1_[;?:_;;[

SEQUENTIAL LOGIC DESIGN

complementary clocks

D Flip-Flop Internal Circuit

» Two back-to-back latches (L1 and L2) controlled by

— N1 passes through to Q

— Dpasses through to Q

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <22>

e When CLK =0 CLK
— L1 is transparent o
— L2 is opaque CLK CLK
— Dpasses through to N1 DD Q N1 D QFOQ
e When CLK =1 11 Q- |2 0-0
— L2 is transparent
— L1 is opaque

e Thus, on the edge of the clock (when CLK rises from 0—1)

ELSEVIER

CLK

Q| O

CLK

D Latch vs. D Flip-Flop

D

Q (latch)

Q (flop)

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <23>

AN
J oy
G i .‘Ia_l'.ll
&I
i

ELSEVIER

D Latch vs. D Flip-

Flop

CLK

Q| O

—

; ?@

/w
/ /
Q (latch) (\& K%

Qo) A

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <24>

i oy
& e ¥ T
sl it | FRAY
)t
G i ‘I a_l'_..

3
]

ELSEVIER

CLK

D,—D Q—Q,

SEQUENTIAL LOGIC DESIGN
i
T

A
)

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <25> lEFL

Enabled Flip-Flops

e Inputs: CLK, D, EN
— The enable input (EN) controls when new data (D) is stored

e Function

— EN=1: Dpasses through to Qon the clock edge
— EN=0: the flip-flop retains its previous state

SEQUENTIAL LOGIC DESIGN

Internal
Circuit
EN CLK Symbol
| |
—10
D Q—Q D Qr
D-—+H1 EN
|

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <26> 1[§1=.EFL

Resettable Flip-Flops

e Inputs: CLK, D, Reset

e Function:

— Reset=1: Qisforcedto 0
— Reset = 0: flip-flop behaves as ordinary D flip-flop

Symbols

|
N

—D Q_ — L

Reset |
|

SEQUENTIAL LOGIC DESIGN

i e
ri- S,
e - e o :_' _.'-:
3 arals,
TR
g _r" ¥
& ’
1

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <27> q;:_;pL

Resettable Flip-Flops

e TWO types:
— Synchronous: resets at the clock edge only
— Asynchronous: resets immediately when Reset=1

« Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

« Synchronously resettable flip-flop?

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <28>]_['-'1]3_-'[H_

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <29>]_['-'1]3_-'[H_

Resettable Flip-Flops

e TWO types:
— Synchronous: resets at the clock edge only
— Asynchronous: resets immediately when Reset=1

« Asynchronously resettable flip-flop requires
changing the internal circuitry of the flip-flop

« Synchronously resettable flip-flop?

Internal
Circuit
CLK

D_
Reset — > D QR

Settable Flip-Flops

Inputs: CLK, D, Set

Function:
— Sef=1: Qissetto1
— Sef=0: the flip-flop behaves as ordinary D flip-flop

Symbols

Set |

SEQUENTIAL LOGIC DESIGN

i e
ri- S,
e - e o :_' o'y
L A
TR
g _r" ¥
& ’
1

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <30> r,;:_pL

Sequential Logic

o Sequential circuits: all circuits that aren’t
combinational

e Aproblematic circuit

012345678t|me(ns)

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <31> q;:_;pL

Sequential Logic

o Sequential circuits: all circuits that aren’t
combinational

e Aproblematic circuit

012345678t|me(ns)

No inputs and 1-3 outputs

Astable circuit, oscillates

Period depends on inverter delay

It has a cyclic path. output fed back to input

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <32>]_[q;:_;pL

Synchronous Sequential Logic Design

» Breaks cyclic paths by inserting registers
» Registers contain state of the system

« State changes at clock edge: system synchronized to the
clock

Rules of synchronous sequential circuit composition:
— Every circuit element is either a register or a combinational circuit
— At least one circuit element is a register
— All registers receive the same clock signal
— Every cyclic path contains at least one register

e Two common synchronous sequential circuits
— Finite State Machines (FSMs)
— Pipelines

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <33> 1:_[q;.'_;|:1

Finite State Machine (FSM)

e Consists of: LK
— State register §— S
Next Current
e Stores current state State State

 Loads next state at clock edge

— Combinational logic
o Computes the next state
o Computes the outputs

Next State Output
Logic Logic

4@ kg o

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <34>]_[q;:_gﬂ_

SEQUENTIAL LOGIC DESIGN

Finite State Machines (FSMs)

o Next state determined by current state and inputs

o Two types of finite state machines differ in output logic:
— Moore FSM: outputs depend only on current state
— Mealy FSM: outputs depend on current state and inputs

Moore FSM
CLK
M noxt) k next I K N
I tat tput
Inputs f;‘;i state state olggr;g outputs
Mealy FSM

CLK
|

M next)k next k N
INPULS -~ state [Sate, ~ Ly state 4 QUIBUL Ly 6 pyts
logic Je

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <35>]_[q;:_;pL

SEQUENTIAL LOGIC DESIGN

FSM Example

 Traffic light controller
— Traffic sensors: 7,, 75 (TRUE when there’s traffic)
— Lights: L,, Lg Dining
Hall

-
F [\
Academic (0D (T Ave.

_@ L Dorms

0 openelg

Labs

SEQUENTIAL LOGIC DESIGN

prg D

Fields

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <36> 1[;1:_;;[

FSM Black Box

e Inputs: CLK, Reset, T,, Tz
e Outputs: L ,, Lg

CLK
|
T, — Traffic —— L,
Light
T, — Controller [—— Lg
Reset

SEQUENTIAL LOGIC DESIGN

r R _'I' ; 5
H T e

e - e ol oy A
i e A
J L
L _'r‘-"'.l'
1
.I

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <37> ELSEVIER

FSM State Transition Diagram

 Moore FSM: outputs labeled in each state
o States: Circles
e Transitions: Arcs

Reset

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <38>

P
ri- S,
e - e o :_' _.'-:
3 arals,
TR
g _r" ¥
X
1

ELSEVIE

R

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

FSM State Transition Diagram

 Moore FSM: outputs labeled in each state
o States: Circles
e Transitions: Arcs

Chapter 3 <39>

R

FSM State Transition Table

<

O

A

I

Q Current

@) State Inputs
o

O

o SO 0 X
: S0 1 X
<L S1 X X
“: S2 X 0
E S2 X 1
8 S3 X X
Wy

V)

el
© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <40> ELSEVIER

FSM State Transition Table

<

O

A

Wi

Q Current

@) State Inputs

o

O

o S0 0 X S1
)]

_ S0 1 X S0
S S1 X X S2
e S2 X 0 S3
E S2 X 1 S2
8 S3 X X S0
i

7o)

el
© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <41> ELSEVIER

Current State Inputs Next State

FSM Encoded State Transition Table

State Encoding

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <42>

0 0 0 X 50 00
0 0 1 X
1 0 X 0 S2 10
1 0 X 1 S3 11
1 1 X X

- 1+ -y j
£ o e]
i S
TG L
L
i o
3 ’

el
ELSEVIER

FSM Encoded State Transition Table

Current State Inputs Next State

State Encoding

0 0 0 X | o | 1 . ”
0 0 1 X | ol o
0 1 X | X1 1] 0 Sl 01
1 0 X o | 1| 1 S2 10
1 0 X 1 111 o0 S3 1
1 1 X | X o] o

5" =58,

50=55%7T,*+5%T7T5

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <43> IER

FSM Output Table

Current State Outputs
Output Encoding

0 0 green 00
0 1 yellow 01
1 0 red 10
1 1

SEQUENTIAL LOGIC DESIGN

el
© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <44> ELSEVIER

FSM Output Table

Current State Outputs
Output Encoding

SEQUENTIAL LOGIC DESIGN

0 0 0 0 1 0 green 00
0 1 0 1 1110 yellow 01
1 0 1 0 0 0 red 10
1 1 1 0 0 1

L :fl

Lo =515

Lg =5

Lgy =55

- v -y j
£ o e]
i S
TG L
L
i o
3 ’

el
© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <45> ELSEVIER

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

FSM Schematic: State Register

Reset

state register

Chapter 3 <46>

P
o T
Ehy e Eae
L | AN
)
iy i .‘Ia_l'.ll
¥

el
ELSEVIER

FSM Schematic: Next State Logic

inputs next state logic

SEQUENTIAL LOGIC DESIGN
Cg%(gj

Py e v on I
St
5
]

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <47> lEFL

FSM Schematic:

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Output Logic

Chapter 3 <48>

¥ P
i oy
& e ¥ T
sl it | FRAY
)t
G i ‘I a_l'_..
3
]

ELSEVIER

< 9 =
MK ““““““ - >/§ =
~| - L3
o i
n 1
8 || |2
ol o I3
0w w 14
oA A |
i N
ol |2 e
N o 3 A
PRy o
SN | Y
o) R I e e T o oM
[9p] [
v 3
o
PN ©
~ <
m ERER mhl \lmk\\\\ I % C
al |12 |Z
NRERE
(48] o wm 5
Sl & WA
rco 8B |8
Nl O[3 |3
w ~l 19 ot
a 5 m_u 9 o
(N] —t =
= WN/NA o -
e CRRRRRE n
5 S
? =
o] 0)) o
- T S o
W
(N] W
o
m w
B A I O 1. lo £
- i
(N] b
=L
_ ~ ™
g |4 18] |s 5
S 18 |5 |2 &
oIS TEr R v E
0 — (0] G
wm ol 6] & O
\WﬁNA WA -
o T e o
_ _ (oS I I [S A o -
B B el e B B --—4---—-L o o
m o o o %
— — —
h n < s} —
0 a4 5
5
oy
NDIS3d JID01 TVILININOIS -

FSM State Encoding

* Binary encoding:
— 1.e., for four states, 00, 01, 10, 11
e One-hot encoding
— One state bit per state
— Only one state bit HIGH at once
— 1.e., for 4 states, 0001, 0010, 0100, 1000

— Requires more flip-flops
— Often next state and output logic is simpler

SEQUENTIAL LOGIC DESIGN

i B e iy
LE S
R
3,

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <50>]_[q;:_;pL

Moore vs. Mealy FSM

o Alyssa P. Hacker has a snail that crawls down a paper tape
with 1°s and 0’s on it. The snail smiles whenever the last two
digits it has crawled over are 01. Design Moore and Mealy

FSMs of the snail’s brain. 7
@r]mN

SEQUENTIAL LOGIC DESIGN

et L
L. e
o
¥
||

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <51> 1[;1:_;;[

State Transition Diagrams

Moore FSM

Mealy FSM

Reset
0/0

1/0 ° 6

Mealy FSM: arcs indicate input/output

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <52>

r L _'I' & 5
% s ¥
:'..:":I ol oy A
i e A
J L
G i .‘ra_l'.ll
i
.I

ELSEVIER

Current

State Inputs Next State

R |k OO0 |0 |0
o 1O (k| |O |0
R O |kP|[O|FL,]|O

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Moore FSM State Transition Table

State Encoding

SO 00

Sl 01

S2 10
Chapter 3 <53>

||
ELSEVIER

Current

State Inputs Next State

SEQUENTIAL LOGIC DESIGN

0 0 0 0 1
0 0 1 0 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 0 0

S =SA

S =A

© Digital Design and Computer Architecture, 2™ Edition, 2012

Moore FSM State Transition Table

State Encoding

SO 00

Sl 01

S2 10
Chapter 3 <54>

- v -y j
£ o e]
i S
TG L
L
i o
3 ’

e |
ELSEVIER

Moore FSM Output Table

Current State Output
0

0

1

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <55> EER

Moore FSM Output Table

Current State Output

0 0 0

1 0

1 0 1
y=35,

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <56> EER

Current Next
State Input State Output

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Mealy FSM State Transition & Output Table

State Encoding

SO 00
Sl 01
Chapter 3 <57>

ELSEVIER

Current Next

State Input State Output

R =] O[O
ROl |0
O, |O|F

R OO |O

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Mealy FSM State Transition & Output Table

State Encoding

SO 00
Sl 01
Chapter 3 <58>

ELSEVIER

Moore FSM Schematic

SEQUENTIAL LOGIC DESIGN

¥ P
i oy
& e ¥ T
sl it | FRAY
)t
G i ‘I a_l'_..
3
]

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <59> lEFL

Mealy FSM Schematic

% S', [S, DY

SEQUENTIAL LOGIC DESIGN

i oy
& e ¥ T
sl it | FRAY
)t
G i ‘I a_l'_..

3
]

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <60> lEFL

_
\\\\\\\\ / e
—
m 1
()
-~ - o
qo]) T2
\\\\\\\\ - ORI I I M e
. - =
(<]
- e N
g M.wv. I n
C [N -
(N] S
3 ~
[&] —
O 5 < | @
>
\\\\\\\\ / PRI NN SN NEp G
o0}
o]0) 2
[8) o
c 9 e
><
e T SN -=f--1
S— N~
()
m S - < &
O o Y
o e [S e an -f--1
©
T T o =
s ~ g 9
%) S
> o[15 28
()

(q0) 2 %
v Sy §
<
Q

[8) A
M 9 Z e
“““““““““““““ o~
™
od g
[&] —
9) < | e
Q S
Q@
r PV.... o
@) -
D o
@) g 5
> ><
M C 9-
\\\\\\\\\\\\\\\\\\\\\\\\\\ Ny
X ° g 0
—
o &
o

NDIS3d 21901 TVILNINDIS

¢chine

ealy Ma

M

pE

X S1

AS1

pE

AS1

ELSEVIER

Chapter 3 <61>

¥

© Digital Design and Computer Architecture, 2™ Edition, 2012

Factoring State Machines

 Break complex FSMs into smaller interacting
FSMs

 Example: Modify traffic light controller to have
Parade Mode.
— Two more inputs: P, R

— When P =1, enter Parade Mode & Bravado Blvd
light stays green

— When R =1, leave Parade Mode

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <62>]_[q;:_f;pL

Unfactored FSM

Factored FSM

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™

Parade FSM

P —>
™ Controller [7> La
T —> L,
r—-—————— 1
I I
P | > Mode :
R4|» FSM I
I
I I
| IM |
I I
I I
Ta II » Lights II/ > Ly
T FSM L
I I
I I
| Controller |
: FSM :
Edition, 2012

Chapter 3 <63>

ELSEVIER

Unfactored FSM

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <64>

|
ELSEVIE

R

Factored FSM

S1
L,: yellow
Lg: red

M+ T,
Lights FSM

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012

Chapter 3 <65>

_ A R
H e S S
:_'..:'. ol oy A
i e A
) R
o e .._ 4
¥
Nl

ELSEVIER

FSM Design Procedure

Identify inputs and outputs
Sketch state transition diagram
Write state transition table
Select state encodings

For Moore machine:
1. Rewrite state transition table with state encodings
2. Write output table

6. Fora Mealy machine:

1. Rewrite combined state transition and output table with state
encodings

7. Write Boolean equations for next state and output Ioglc
8. Sketch the circuit schematic G

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <66> 1:_[;];_;;1

ok wbhE

SEQUENTIAL LOGIC DESIGN

Parallelism

e Two types of parallelism:
— Spatial parallelism
o duplicate hardware performs multiple tasks at once
— Temporal parallelism
o task iIs broken into multiple stages
» also called pipelining
 for example, an assembly line

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <99> 1;1:_;;[

SEQUENTIAL LOGIC DESIGN

Parallelism Definitions

» Token: Group of Inputs processed to produce
group of outputs

« Latency: Time for one token to pass from
start to end

* Throughput: Number of tokens produced
per unit time

Parallelism increases throughput

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <100>]_[q;:_f;

R

Parallelism Example

« Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

e 5 minutes to roll cookies
e 15 minutes to bake
« What is the latency and throughput without parallelism?

SEQUENTIAL LOGIC DESIGN

a AT P r
- | o g
ll M ; L
X
]

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <101> 1;1:_;;[

Parallelism Example

« Ben Bitdiddle bakes cookies to celebrate traffic light
controller installation

e 5 minutes to roll cookies
e 15 minutes to bake
« What is the latency and throughput without parallelism?

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 tray/ 1/3 hour = 3 trays/hour

SEQUENTIAL LOGIC DESIGN

i i B i
e g
e 3 o
X
1

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <102> 1[;1:_;;[

Parallelism Example

 \What is the latency and throughput if Ben
uses parallelism?

— Spatial parallelism: Ben asks Allysa P. Hacker to
help, using her own oven

— Temporal parallelism:
e two stages: rolling and baking
e He uses two trays

* While first batch is baking, he rolls the
second batch, etc.

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <103>]_[q;:_;pL

Spatial Parallelism

Latency:

Tray 1
S
<2 Tray 2 Alyssa 1
T2
& S Tray3
ol
Tray 4 Alyssa 2
\J
Latency = ?

Throughput = ?

SEQUENTIAL LOGIC DESIGN

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <104>

time to
first tray
0 5 10 15 20 25 30 35 40 45 50
|]]]]]]]]]] .
Time

Roll

Legend

Tray 1
£
T2 Tray?2
B2
S S Tray 3
@
o
Tray 4

SEQUENTIAL LOGIC DESIGN

Spatial Parallelism

Alyssa 1

Alyssa 2

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 2 trays/ 1/3 hour = 6 trays/hour

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <105>

Latency:
time to
first tray
0 5 10 15 20 25 30 35 40 45 50
|]]]]]]]]]] .
Time

e L
S el
X
e ||

ELSEVIER

SEQUENTIAL LOGIC DESIGN

Temporal Parallelism

Temporal
Parallelism

Latency:
time to
first tray

0 5 10 15 20 25 30 35 40 45 50

Latency = ?
Throughput = ?

AN
e S
J L
G i .‘Ia_l'.ll
&I
g |

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <106> ELSEVIER

Temporal Parallelism

Temporal
Parallelism

Latency =5 + 15 = 20 minutes = 1/3 hour
Throughput = 1 trays/ 1/4 hour = 4 trays/hour

Using both techniques, the throughput would be 8 trays/hour

SEQUENTIAL LOGIC DESIGN

il e C A
:_'..:".' __:_' o'y
i e A
J
il _'r‘-"'.l'
X
1

© Digital Design and Computer Architecture, 2™ Edition, 2012 Chapter 3 <107> q;:_R

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 41
	Slide Number 42
	Slide Number 43
	Slide Number 44
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 99
	Slide Number 100
	Slide Number 101
	Slide Number 102
	Slide Number 103
	Slide Number 104
	Slide Number 105
	Slide Number 106
	Slide Number 107

